Кодирование звуковой информации

Кодирование звуковой информации

Кодирование звуковой информации

Введение

Не до конца понимаете, как происходит кодирование звуковой информации? Запутались в аналогово-цифровых и цифро-аналоговых преобразователях? Записывайтесь ко мне на индивидуальный урок по информатике и ИКТ. Кроме рассмотрения теоретических сведений мы с вами прорешаем колоссальное количество тематических примеров.

Общие сведения о звуковой информации

В течение дня обычный человек слышит большое количество различных звуков. Давайте попытаемся кратко понять, что же такое звук. Звук – колебания воздуха, которые были созданы неким источником.
Под источником звука можно понимать любой предмет, объект, который способен генерировать звуковые волны:

  • Человек, который что-то произнес.

  • Проезжающий поезд, от которого исходит шум.

  • Музыкальные инструменты, на которых играет музыкант.

В самом широком физическом смысле под звуком следует понимать простую волну. Если говорить о графической интерпретации звука, то звуковые волны следует представлять, как множество синусоидальных графиков функций, каждый из которых имеет ряд обязательных параметров.

Звук обладает множеством характеристик, но ключевыми являются лишь две:

  1. Амплитуда звуковой волны.

  2. Частота звуковой волны.

Об этих свойствах будет детально рассказано в следующем разделе данной статьи.

Сейчас я вам покажу график функций идеальной звуковой волны, которой в природе физически не существует.

Идеальная звуковая волна

Графическое представление идеальной звуковой волны

Также хочу продемонстрировать график функций неидеальной звуковой волны, которая является речью обыкновенного человека.

Неидеальная звуковая волна

Графическое представление неидеальной звуковой волны, которая является речью человека

Посмотрев на оба выше представленных графика функций, у вас должны возникнуть следующие мысли и закономерный вопрос: если перед нами изображен график функций, то где координатная ось, координатная сетка, градуированные шкалы осей ОХ и оси ОY, а также нужно понять, на основании каких закономерностей построены данные графики функций? То есть, какие параметры выступают значением по оси абсцисс и по оси ординат. О данных характеристиках, параметрах будет рассказано ниже.

Характеристики звуковой информации

Как было сказано выше, что звук обладает двумя ключевыми характеристиками: амплитудой и частотой.

Амплитуда – по сути, громкость или сила звука, измеряемая в децибелах. В физике принято сокращение единицы децибел до дБ. Человек в дневное время суток способен воспринимать звуки громкостью от 10-15 дБ. Уровень громкости звука является относительной величиной. Болевой порог для человека составляет уровень громкости звука в 120-130 дБ.

Частота – отношение количества колебаний звуковой волны в единицу времени. Иногда вместо термина «частота звука» используется термин «высота звука». Единицей измерения частоты в мировой системе СИ является герц. Обозначается единица герц как Гц. Человек воспринимает звуковые волны в диапазоне от 20 Гц до 20000 Гц. Звуковые волны, имеющие частотность меньше, чем 20 Гц, называют инфразвуком. Звуковые волны, имеющие частотность выше, чем 20000 Гц, называют ультразвуком.

Влияние частоты на тип звука

Влияние частоты на тип звука

Давайте вернемся к графикам функций идеальной и неидеальной звуковой волны.

График идеальной звуковой волныГрафик неидеальной звуковой волны

Наша задача – разобраться, какая величина откладывается на оси абсцисс, а какая – на оси ординат.

Очевидно, что одной из осей является популярнейшая характеристика большинства физических графиков функций – время. Мы не сможем исследовать поведение звуковой волны, если не будем рассматривать ее в различные отрезки времени. Следовательно, осью абсцисс является параметр время. Единицей измерения является, например, секунда или миллисекунда.

Осью ординат выступает амплитуда или громкость рассматриваемой звуковой волны. Чем больше громкость или выше амплитуда, тем выше проходит график функций, соответствующий анализируемой звуковой волне.

Представим те же самые графики функций звуковых волн, но уже с обозначениями осей координат и их градуировкой.

Идеальная звуковая волнаНеидеальная звуковая волна

Частота дискретизации звука

Необходимо знать, что процессор персонального компьютера взаимодействует с любыми данными на уровне двоичного кода. Двоичный или бинарный код – цепочки битов, которые принимают только одно из двух предопределенных значений, – 0 или 1.

Под кодированием звуковой информации следует понимать преобразование аналогового звукового сигнала в формат, понятный процессору персонального компьютера, то есть в двоичный код. Аналоговый или непрерывный звуковой сигнал у нас представлен в виде графика функций, как зависимость амплитуды от времени.

Чтобы оцифровать аналоговый звуковой сигнал разобьем ось, выражающую время, на некоторое количество равных отрезков и произведем замеры амплитуды/громкости в каждом отрезке. Предлагаю произвести разбивку с шагом 0.1 секунды.

Дискретизация – процесс преобразования непрерывного сигнала в дискретный, то есть прерывный сигнал. Под частотой дискретизации следует понимать частоту взятия отсчетов непрерывного во времени сигнала при его дискретизации. В нашем случае дискретизация – операция, связанная с разбивкой оси абсцисс, отвечающей за время, на отдельные одинаковые участки. А частотой дискретизации является значение, равное 10 Гц. То есть мы производим 10 замеров амплитуды звуковой волны за 1 секунду.

Дискретизация неидеальной звуковой волны

Дискретизация неидеальной звуковой волны

Таблица значений громкости звуковой волны при частоте дискретизации 10 Гц:

Время, сек

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Громкость, дБ

90

20

80

30

90

10

40

20

90

20

60

Разрядность звука при кодировании звуковой информации

В теории кодирования звуковой информации понятие разрядности взаимосвязано с понятием квантования. В грубом приближении под квантованием можно понимать операцию, которая преобразует значения громкости или амплитуды звукового сигнала в двоичный код.

Обратимся еще раз к графику функций, который выражает аналоговый неидеальный звуковой сигнал. Значения громкости находятся в диапазоне от 0 до 100 децибел. Следовательно, у нас должна быть возможность запоминания 101 различного состояния, значения. Давайте рассчитаем минимальное количество бит информации, необходимой для кодирования 101 различного значения. Для этого решим простейшее показательное неравенство: 2x ≥ 101. Очевидно, что x = 7, так как 27 = 128 ≥ 100. Следовательно, для кодирования звуковой информации нам будет достаточности разрядности в 7 бит.

Сейчас мы произведем операцию квантования по отношению к замеренной громкости звуковой волны:

 Время, сек

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Громкость, дБ

90

20

80

30

90

10

40

20

90

20

60

Двоичный код

1011010

0010100

1010000

0011110

1011010

0001010

0101000

0010100

1011010

0010100

0111100

На этом этап кодирования звуковой информации можно считать законченным. В оперативной памяти персонального компьютера входной аналоговый звуковой сигнал будет представлен в следующем виде:

101101000101001010000001111010110100001010 01010000010100101101000101000111100

Хочу обратить ваше внимание, что в приведенном примере мы использовали ничтожно малую частоту дискретизации, равную 10 Гц. В современных условиях кодирование звуковой информации осуществляют при частоте дискретизации 44100 Гц. То есть мы провели 10 замеров в течение 1 секунды, а на практике обеспечивают 44100 замеров за 1 секунду. Чем чаще производятся замеры исследуемой величины, тем точнее кодируется звуковая информация.

Для ради эксперимента давайте рассчитаем информационный объем, которые требуется для хранения звуковой волны в нашем примере, при частоте дискретизации 10 Гц и разрядности 7 бит.

V = [Частота дискретизации] ∙ [Разрядность] ∙ [Промежуток времени] = 10 ∙ 7 ∙ 1 = 70 [бит].

Данная формула справедлива для монозвука. Информационный объем для стереозвука рассчитывается по аналогичной формуле, но в начале стоит коэффициент 2. Это связано с тем, что при кодировании стерео звуковой информации используется две дорожки.

Уровни громкости звука

Громкость, дБ

Характеристика

Источник звука

0

Абсолютная тишина

 

5

Почти идеальная тишина

 

10

Почти идеальная тишина

Шорох листьев

15

Едва слышно

Качание веток деревьев

20

Едва слышно

Шепот человека

25

Очень тихо

Шепот человека

30

Тихо

Тиканье часов на стене

35

Ниже среднего

Речь человека на расстоянии 10 метров

40

Ниже среднего

Обыкновенная речь человека

45

Ниже среднего

Обыкновенная речь человека

50

Средне

Печатная машинка

55

Выше среднего

Офисное помещение

60

Шумно

Отдел продаж

65-75

Шумно

Громкий разговор, крики, смех

80

Очень громко

Крик человека

85

Очень громко

Громкий крик человека

90

Очень шумно

Движение поезда на расстоянии в 1 метр

95

Очень шумно

Движение метро снаружи

100

Крайне шумно

Оркестр

120

Невыносимо громко

Отбойный молоток

130

Болевой порог

Самолет при взлете

150

Контузия

Старт ракеты

160

Шок, тяжелые травмы слухового аппарата

Ударная волна при взрыве ядерной бомбы

200

Смерть

Шумовое оружие

Громкость звука необходимо учитывать при кодировании звуковой информации, так как ее величина влияет на разрядность кодирования звуковых волн, а следовательно, и на информационный вес закодированного в двоичном коде звукового файла.

Краткие логические выводы

Подытожим алгоритм кодирования звуковой информации:

  1. Анализ входного аналогового сигнала. Как правило данный сигнал выражается графиком функций в системе координат время-громкость.

  2. Проведение операции дискретизации, то есть разбивка входного сигнала на конечное и одинаковые по размерам фрагменты. Чем больше значение частоты дискретизации, тем выше точность преобразования при кодировании звуковой информации.

  3. Проведение операции квантования, то есть перевод значений в двоичный формат.

  4. Запись двоичного кода в звуковой файл, находящегося на жестком диске персонального компьютера.

Если у вас остались какие-либо вопросы по теме «Кодирование звуковой информации», то записывайтесь ко мне на индивидуальный урок по информатике и ИКТ. Кроме теоретических сведений из области кодирования звуковой информации мы будем делать упор и на решение тематических заданий.

 
 
 
 
Авторизация на сайте
 
 
 
Обнаружили
ошибку на сайте?
Занятия по информатике