Задача №10 (общий размер всех выплат)
 

Другие статьи из рубрики «Финансовая математика»

Содержание:

Не получается успешно решать задачи, где нужно использовать формулу дифференцированных платежей?

Привет! Вы находитесь на персональном сайте профессионального репетитора по математике, информатике, программированию, алгоритмам и базам данных. Моя ключевая компетенция - подготовка школьников $10-11$-ых классов к успешной сдаче ЕГЭ по математике и информатике.

Оказались вы на этой веб-странице не случайно. Очень вероятно, что вы имеете колоссальные проблемы с формулой дифференцированных платежей, я прав? Если, да, то вы попали по адресу!wink Знакомьтесь до конца с материалом, и я гарантирую, что вы однозначно станете сильнее в подобных заданиях.

Я понимаю, что вы достаточно занятой человек, который ценит каждую секунду, но, несмотря на это, я настоятельно рекомендую вам потратить буквально $2-3$ минуты и ознакомиться с отзывами моих подопечных. Все они достигли поставленных целей! У вас тоже получится.

Берите в руки сотовый телефон, набирайте мой контактный номер, дозванивайтесь, обговаривайте все нюансы и записывайтесь на первый пробный урок. Я один, а желающих заниматься со мной предостаточно, поэтому, не упустите свой шанс. Количество ученических мест ограничено.

 

Условие задачи

$15$ января планируется взять кредит в банке на $15$ месяцев.

Условия его возврата таковы:

  • $1$-го числа каждого месяца долг возрастает на $1\%$ по сравнению с концом предыдущего месяца.

  • Со $2$-го по $14$-е число каждого месяца необходимо выплатить часть долга.

  • $15$-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на $15$-е число предыдущего месяца.

Известно, что восьмая выплата составила $108\ 000$ рублей.

Какую сумму (в миллионах) нужно вернуть банку в течение всего срока кредитования?

Решение задачи

Внимательно перечитываем постановку задачи и пытаемся найти фразы-маркеры, которые подскажут нам, какую кредитную программу нужно использовать. Напомню, что в заданиях на кредиты из экономического блока ЕГЭ по математике встречаются $2$ принципиально разные схемы выплат:

  • схема дифференцированных платежей;

  • схема аннуитетных платежей.

Данная фраза-маркер "$15$-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на $15$-е число предыдущего месяца" все расставляет по своим местам! Перед нами задача на применение формулы дифференцированных платежей.

Повторяю об этом на каждом уроке и в каждой статье на сайте: для успешного решения задач, ориентированных на дифференцируемые платежи, нужно очень основательно понимать соответствующую математическую модель. Не знакомы с ней? Срочно бегите ее изучать, исследовать. Можете потратить любое количество времени, до тех пор, пока не разберетесь со всеми нюансами.

Давайте введем следующие обозначения:

\(S\) - размер первоначального кредита \(r\) - процентная ставка банка, выраженная в долях \(R = 1 + r\) - для удобства расчетов
\(n\) - общее количество отчетных периодов \(i\) - номер текущего отчетного периода \(\%_{i}\) - размер начисленных банком процентов за конкретный период
\(p_{i}\) - размер платежа за конкретный период \(P\) - общая сумма всех выплат/платежей \(q\) - ставка банка, выраженная в процентах

Эти обозначения являются сквозными во всех моих разборах. Это удобно, и позволяет читателю безболезненно переключаться между решениями, не путаясь в математических преобразованиях.

Из условия вытекает, что:

$n = 15$ $q = 1\%$ $r = \frac{q}{100} = 0.01$ $p_{8} = 108\ 000$, млн.руб.

Наша задача определить $P$, то есть общий размер всех платежей/выплат!

Важно! Если вы хотите получить максимальный балл за решение задачи, где нужно применть формулу дифференцированных платежей, то в своем решении постарайтесь привести вывод соответствующей математической модели. Уже писал выше о том, что, если плохо знакомы с этой моделью, то идите и зубрите ее.

Давайте пристально посмотрим на формулу, которая позволяет получить общий размер всех выплат:

$P = \frac{S\ *\ r\ *\ (n\ +\ 1)}{2} + S$

В этой формуле нам неизвестен размер первоначального кредита, то есть переменная $S$. Следовательно, чтобы продолжить решение, нам нужно воспользоваться следующим ограничением: "восьмая выплата составила $108\ 000$ рублей".

Вспомним, что платеж за любой отчетный период формируется из размера начисленных процентов за данный период и равной части стартовой ссуды:

$p_{i} = \%_{i} + \frac{S}{n}$ - размер $i$-го платежа.

Нам известно, что $p_{8} = 108\ 000$ миллионов рублей.

С другой стороны: $p_{8} = \%_{8} + \frac{S}{15}$.

Чтобы определить объем начисленных банком процентов за $8$ период, снова обратимся к математической модели:

$\%_{8} = \frac{n - 8 + 1}{n} * S * r = \frac{15 - 8 + 1}{15} * S * 0.01 = \frac{8}{15}  * 0.01 * S$

Тогда: $p_{8} = \frac{8}{15} * 0.01 * S + \frac{S}{15}$

Тогда решим уравнение, чтобы определить размер стартового кредита:

$\frac{8}{15} * 0.01 * S + \frac{S}{15} = 108\ 000$ $\:\:\:$ $|*15$

$8 * 0.01 * S + S = 108\ 000 * 15$

$1.08 * S = 108\ 000 * 15$ $\:\:\:$ $|:1.08$

$S = \frac{108\ 000\ *\ 15}{1.08}$

$S = \frac{108\ *\ 1000}{108} * 15 * 100$

$S = 1000 * 15 * 100$

$S = 1\ 500\ 000$, руб. или $1.5$, млн.руб - размер первоначального кредита.

Теперь у нас все готово для того, чтобы рассчитать общий объем всех платежей. Поехали! Не забываем производить расчет в "миллионах",- такое требование в условии задачи.

$P = \frac{S\ *\ r\ *\ (n\ +\ 1)}{2} + S$

$P = \frac{1.5\ *\ 0.01\ *\ (15\ +\ 1)}{2} + 1.5$

$P = \frac{1.5\ *\ 0.01\ *\ 16}{2} + 1.5$

$P = 1.5 * 0.01 * 8 + 1.5$

$P = 12 * 0.01 + 1.5$

$P = 0.12 + 1.5$

$P = 1.62$, млн.руб. - общий размер всех платежей.

Отлично! Результат получен! Но может возникнуть такой вопрос, у некоторых педантичных старшеклассников: "А ответ-то правильный?"indecision Уверен, что, да! И сейчас попробую это доказать.

Для этого я прибегну к первоклассной программе "MS Excel", при помощи которой, сформирую процессинговую таблицу. Вот эта таблица:

Данная таблица чем-то напоминает арифметический способ решения заданий из экономического блока. А вообще, используя значения этой таблицы, можно проводить всесторонний анализ. Четко прослеживаются все арифметические прогрессии, любые размеры сумм и т.п.

Кстати, данная таблица однозначно доказывает, что наше алгебраическое решение, с применением формул дифференцированных платежей, абсолютно правильное.

Ответ: $1.62$

Выводы и рекомендации

Пожалуй, самая главная моя рекомендация - тщательно и скрупулезно изучить математическую модель дифференцируемых платежей. Также выучить все свойства этой модели. Назубок выучить все формулы, которые в этой модели встречаются.

Очень внимательно перечитывайте постановку задачи и не перепутайте тип кредитной программы. Если перепутаете - ответ будет абсолютно неправильным. Следите за фразами-маркерами, в которых зашифрована информация о типе кредитных платежей.

В процессе решения не забудьте привести выкладки математической модели дифференцируемых платежей, а также все формулы дифференцированных платежей в общем виде. Иначе эксперты могут посчитать ваше решение неполным, и, как следствие, снизить итоговый балл.

И старайтесь задания из экономического блока ЕГЭ по математике все-таки решать алгебраическим способом, используя различные формулы и доказательства. Это профессиональный подход, показывающий вашу финансовую квалификацию!

Примеры условий реальных задач, встречающихся на ЕГЭ по математике

Специально для своих учеников и читателей моего сайта, я подготовил список задач из финансового блока ЕГЭ по математике, в которых нужно, так или иначе, использовать формулы дифференцированных платежей.

Попробуйте решить их самостоятельно! Но, если вдруг, будут возникать какие-либо трудности, то смело переходите по ссылке "Перейти к текстовому решению" и знакомьтесь с моим разбором.

Пример №1

В мае планируется взять кредит в банке на сумму \(10\) миллионов рублей на \(5\) лет.
Условия его возврата таковы:

  • Каждый декабрь долг возрастает на \(10\%\) по сравнению с концом предыдущего года.

  • С января по март каждого года необходимо выплатить часть долга.

  • В мае каждого года долг должен быть на одну и ту же величину меньше долга на май предыдущего года.

Сколько миллионов рублей составила общая сумма выплат после погашения банковского кредита?

Перейти к текстовому решению

Пример №2

В июле планируется взять кредит в банке на сумму \(6\) миллионов рублей на некоторый срок.
Условия его возврата таковы:

  • Каждый январь долг возрастает на \(20\%\) по сравнению с концом предыдущего года.

  • С февраля по июнь каждого года необходимо выплатить часть долга.

  • В июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.

На какой минимальный срок следует брать кредит, чтобы наибольший годовой платеж по кредиту не превысил \(1.8\) миллиона рублей?

Перейти к текстовому решению

Пример №3

В июле планируется взять кредит в банке на сумму \(20\) миллионов рублей на некоторый срок (целое число лет).
Условия его возврата таковы:

  • Каждый январь долг возрастает на \(30\%\) по сравнению с концом предыдущего года.

  • С февраля по июнь каждого года необходимо выплатить часть долга.

  • В июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.

На сколько лет был взят кредит, если известно, что общая сумма выплат после его погашения равнялась \(47\) миллионов рублей?

Перейти к текстовому решению

Пример №4

В июле планируется взять кредит в банке на сумму \(16\) миллионов рублей на некоторый срок (целое число лет).
Условия его возврата таковы:

  • Каждый январь долг возрастает на \(25\%\) по сравнению с концом предыдущего года.

  • С февраля по июнь каждого года необходимо выплатить часть долга.

  • В июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.

На сколько лет был взят кредит, если известно, что общая сумма выплат после его погашения равнялась \(38\) миллионов рублей?

Перейти к текстовому решению

Пример №5

В июле планируется взять кредит в банке на сумму \(6\) миллионов рублей на срок \(15\) лет.
Условия его возврата таковы:

  • Каждый январь долг возрастает на \(q\%\) по сравнению с концом предыдущего года.

  • С февраля по июнь каждого года необходимо выплатить часть долга.

  • В июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.

Найти \(q\), если известно, что наибольший годовой платеж по кредиту составит не более \(1.9\) миллиона рублей, а наименьший не менее \(0.5\) миллиона рублей.

Перейти к текстовому решению

Пример №6

\(15\) января планируется взять кредит в банке на \(39\) месяцев.
Условия его возврата таковы:

  • \(1-го\) числа каждого месяца долг возрастает на \(q\%\) по сравнению с концом предыдущего месяца.

  • Со \(2-го\) по \(14-е\) число месяца необходимо выплатить часть долга.

  • \(15-го\) числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на \(15-е\) число предыдущего месяца.

Известно, что общая сумма выплат после полного погашения кредита на \(20\%\) больше суммы, взятой в кредит. Найдите \(q\).

Перейти к текстовому решению

Пример №7

Анатолий взял банковский кредит сроком на \(9\) лет. В конце каждого года общая сумма оставшегося долга увеличивается на \(17\%\), а затем уменьшается на сумму, уплаченную Анатолием. Суммы, выплачиваемые в конце каждого года, подбираются так, чтобы в результате сумма долга каждый год уменьшалась равномерно, то есть на одну и ту же величину.

Сколько процентов от суммы кредита составила общая сумма, уплаченная Анатолием банку (сверх кредита)?

Перейти к текстовому решению

Пример №8

Анна взяла кредит в банке на срок \(12\) месяцев (\(1\) календарный год). В соответствии с банковским договором Анна возвращает кредит банку ежемесячными платежами. В конце каждого месяца к оставшейся сумме долга добавляется \(q\%\) этой суммы, и своим ежемесячным платежом Анна погашает эти добавленные проценты и уменьшает сумму долга.

Ежемесячные платежи подбираются так, чтобы долг уменьшался на одну и ту же величину каждый месяц (на практике такая модель называется "схемой с дифференцированными платежами"). Известно, что общая сумма, выплаченная Анной банку за весь период кредитования, оказалась на \(13\%\) больше, чем сумма, взятая ей в кредит. Найдите процентную ставку банка, то есть \(q\).

Перейти к текстовому решению

Пример №9

В июле планируется взять кредит в банке на сумму \(28\) миллионов рублей на некоторый срок (целое число лет).
Условия его возврата таковы:

  • Каждый январь долг возрастает на \(25\%\) по сравнению с концом предыдущего года.

  • С февраля по июнь каждого года необходимо выплатить часть долга.

  • В июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

Чему будет равна общая сумма выплат после полного погашения кредита, если наибольший годовой платеж составит \(9\) миллионов рублей?

Перейти к текстовому решению

Пример №10

\(15\) января планируется взять кредит в банке на \(15\) месяцев.
Условия его возврата таковы:

  • \(1-го\) числа каждого месяца долг возрастает на \(1\%\) по сравнению с концом предыдущего месяца.

  • Со \(2-го\) по \(14-е\) число каждого месяца необходимо выплатить часть долга.

  • \(15-го\) числа каждого месяца долг должен быть на одну и ту же величину меньше долга на \(15-е\) число предыдущего месяца.

Известно, что восьмая выплата составила \(108\,000\) рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?

Перейти к текстовому решению

Все эти задачи на дифференцированные платежи из ЕГЭ по математике решаются достаточно быстро, если вы хорошо знаете, как устроена математическая модель дифференцируемых платежей. Повторю, уже, наверное, раз $10$-ый - разбирайтесь с математической моделью, и будем вам счастье.

Также, время от времени, рекомендую обращаться к этому списку заданий, так как он постоянно обновляется и дополняется, появляются новые условия, а также соответствующие мои математические разборы.

Что-то все равно осталось непонятным? Звоните и записывайтесь на 1-й пробный урок!

Если после прочтения данного материала у вас остались какие-то вопросы, недопонимания, то это некритично, и, даже, вполне логично! Недостаточно пристально рассмотреть одно решение задачи на дифференцированные платежи из ЕГЭ по математике. Нужен комплексный подход!

Я - репетитор-практик, который на своих занятиях, уделяет львиное количество времени конкретным разборам, техникам и эффективным методикам решения. Всевозможной теории полно в глобальной сети Интернет, а экзамен ЕГЭ по математике является практическим, то есть нужно уметь решать, а не знать теоретические изыски.

Мои занятия проходят дистанционно, посредством таких программ, как "Скайп" и "AnyDesk". Подобный формат взаимодействия репетитора с учеником является очень удобным, позволяет задействовать мультимедийные технологии, а также достаточно недорог.

Я достаточно востребованный и известный репетитор по математике и информатике, поэтому, не откладывайте свое решение в долгий ящик. Действуйте прямо сейчас! И не забывайте, что количество ученических мест ограничено, поэтому, завтра свободных мест уже может и не остаться.

 

Отзывы
моих учеников

Мельник
Игорь

 
Я рад, что обратился к такому сильному репетитору, как Александр Георгиевич. Видно, что он прекрасно разбирается в студенческом программировании, владеет терминологией на шикарнейшем уровне, очень понятно объясняет....

Арсеньев
Михаил

 
Еще учась в 9-ом классе, я для себя определил, что хочу продолжить обучение в одном из лучших ВУЗов страны и задолго до экзамена начал подготовку. Очень долго выбирал репетитора, но когда встретил Александра...

Владимир
Дятлов

 
Спасибо вам за помощь) Я хотел сначала тупо все заказать на стороне, но стало интересно разобраться самостоятельно и у меня получилось благодаря вашему наставничеству. Если не сдам экзамен, то опять обращусь к вам за...

Белкин
Юрий

 
Круто, что я сдал на 5 свой экзамен, было оооооочень сложно, но у меня получилось. Кстати, Александр Георгиевич кроме языка СИ еще приводил сравнения с языком С++, очень круто на самом деле. Заниматься понравилось и...

Лебедев
Валерий

 
С большим удовольствием занимался с учителем, т к начал понимать программирование на более углубленном уровне. Очень много изучали такую тему как "указатели" и я их понял наконец-таки очень хорошо. Понимание указателей...

Крылов
Антон

 
Я не ожидал, что получу 83 балла, думал, максимум 70, а результат меня ошеломил. Вы просто мастер Александр Георгиевич, выражаю вам благодарность большую.

Леонов
Никос

 
Полученный бал, превзошел все мои ожидания, так как я максимум рассчитывал на 90 баллов тестовых. Думаю, получением столь высокой оценки я обязан репетитору Александру Георгиевичу. Но мой личный вклад тоже не мал!

Коваленко
Всеволод

 
Хочу отметить дисциплину на уроках, я чувствовал себя как на официальной паре, никаких шуток и панибратств. Очень понравилось серьезное отношение к дисциплине, т к я сам челвоек дисциплинированный. Спасибо вам!

Каховская
Оксана

 
Хочу всем сказать, что я по своему духу лингвист. Паскаль - это формальный язык написания текстов. Благодаря репетитору я уверенно себя стала чувствовать при написании программ. Мне досконально понятны все базовые...

Калиновский
Илья

 
Как только поступил в ВУЗ, думал, что буду отчислен из-за дисциплины программирования, т к оказалось очень сложной и у меня ничего не получалось. Потом нашел репетитора и вместе с ним научился средне программировать и...

Шамшуров
Денис

 
Спасибо вам большое Александр Георгиевич! Вы практически сделали невозможное - натаскали меня к экзамену по программированию, которое я очень плохо понимал до того, как обратился к вам. Хочу отдельно отметить, что урок...

Даниил
Сафонов

 
Чтобы программировать, нужно быть усидчивым и очень умным человеком. Я больше гуманитарий, поэтому мне вся эта техническая мысль дается крайне сложно. Но мне понравилось работать с Александром Георгиевичем. Видно, что...

Корелов
Дмитрий

 
Нравится заниматься программированием с Александром Георгиевичем, сейчас уже точно уверен, что буду программистом на одном из лучших современных языков программирования.

Якименко
Александр

 
Я вообще, в школе учусь плоховато и, меня натаскивают родители, заставляют заниматься, но когда занимались с Александром Георгиевичем, то мне нравилось, я начал понимать и начинала появляться уверенность, что я Смогу....

Иванов
Денис

 
Очень много нового узнал о ДС, Александр Георгиевич показал несколько способов построения бинарного дерева, а также реализацию функций повышенного уровня сложности. Когда шел на экзамен, то абсолютно не волновался, так...

Миронов
Сергей

 
Очень рад, что поступил в заветный ВУЗ, так как считаю, что именно в этом ВУЗе можно научиться отлично программировать, а репетитор помог мне очень сильно. Было интересно заниматься и сложно. Особенно я целыми часами...

Ахматова
Юлия

 
В нашем вузе я должна была сдавать экзамену по C#. Билеты были очень сложные. Один вопрос теоретический, практическая задача в консоли и лабораторная, связанная с базами данных. Знания у меня были тусклые в этих...

Пахмутов
Кирилл

 
Я не знаю почему, но так сложилось, что я не смог сходу понять логические преобразования и обратился за помощью к профессиональному репетитору Александру Георгиевичу. Результат превзошел все мои ожидания, я досконально...

Соколов
Дмитрий

 
Я научился тому, о чем мечтал с 15 лет. Александр Георгиевич, оказывается, очень хорошо знает веб-программирование, хотя его основной профиль (по его словам) - подготовка к ОГЭ/ЕГЭ по информатике и ИКТ. Скажу честно,...

Малышев
Евгений

 
В школе никогда не было нормальной информатики, поэтому на первом курсе я столкнулся с большой проблемой. Надо было научится программировать на языке Паскаль. А я даже не знал азы и не представлял что такое...

Белов
Антон

 
Заниматься очень понравилось, преподаватель прекрасно знает преподаваемый материал. Многое узнал дополнительно, задавал много смежных вопросов и получал профессиональные ответы. Также понравилось, что в процессе урока...

Сычев
Владимир

 
Понравилось заниматься, т к я научился более серьезно понимать программные конструкции, понял наконец-то что такое "указатель" и уже не так сильно боюсь программирования. Главное, больше практиковаться и решать простые...

Орлов
Максим

 
Спасибо большое вам Александр Георгиевич. Было очень интересно и увлекательно решать с вами данные лабораторные. Они оказались не такими сложными, какими они казались изначально. Оказывается процесс программирования...
Смотреть все отзывы
 
 
 
 
 
 
Авторизация на сайте
 
 
 
Обнаружили
ошибку на сайте?
Занятия по информатике